

数字导电性/酸碱性测试仪 型号 EC600

简介

感谢您购买 Extech 的导电性/酸碱度测试仪。为取得最佳使用效果,请在使用前完整地阅读本手册。 EC600 测量导电性、酸碱度和温度参数。通过导电性测量还可以得到 TDS(总溶解固体)、盐度和电阻 读数。

通过内置的微处理器可实现自动调整、自动温度补偿、数据存储和自我诊断功能。这款仪表最多可识别 13 种酸碱度标准缓冲溶液和 8 种导电性标准缓冲溶液。

这款仪表采用数字过滤器提高了测量速度和精度。

具有两种特殊模式(蒸馏水、蒸馏水氨溶液)。

这款仪表有背光的液晶显示屏,防尘、防水,符合 IP57 保护等级的要求。

这款仪表在出厂前经过了完整测试和校准,如精心使用,可保证多年的可靠服务。

设备清单

- EC600 仪表
- 导电性和酸碱度电极
- 酸碱度标准缓冲溶液(4.00pH, 7.00pH 和 10.01pH)/50ml
- 标准导电性溶液(1413µS/cm)/50ml
- 螺丝刀(用于拆卸电池盒)
- 电池(2 x 'AA' 1.5V)
- 用户指南
- 工具箱

仪表图解

- 1. 液晶显示屏(下面详细说明)
- 2. 橡胶保护套(拆下橡胶保护套可看到背后的电池盒)
- 3. 键盘(细节如下)
- 4. 电极连接插口
- 5. 电极插头
- 6. 电极电缆

显示内容说明

- 1. 测量类型图标
- 2. 测量读数
- 3. 888(存储数据序列号), M+(测量存储图标), RM(读数调用图标)
- 4. 测量单位
- 5. 温度读数
- 6. 测量值稳定图标
- 7. 校准图标
- 8. 低电量图标

这款仪表正面板有五个功能按键:

ON OFF CAL

开关键

校准键:

a) 在测量时,按下该按键可进入校准模式。

b) 在编程模式中时,按下该按键可改变显示号码或改变开关状态。

MODE

功能键

- a) 在酸碱度测量模式中,短促地按下该按键一次可在 pH 和 mV 导电性测量模式之间切换。 长按该按键(>2 秒钟)可进入参数设置模式。连续按下该按键可浏览各项参数。
- b) 在其他测量模式中,按住该按键可进入参数设置模式。仪表将显示各项参数。

M+

背光和 ENTER 键

- a) 在测量模式中, 短促地按下该按键可开关背光。
- b) 在编程或校准模式中时,按下该按键可输入数据。
- c) 在酸碱度模式中,按住该按键可把酸碱度分辨率在 0.01 到 0.1pH 之间调整。
- d) 在导电性模式中,按住该按键可浏览总溶解固体、盐度、电阻率和导电性模式。

存储和调用按键

- a) 在测量模式中时,短促地按下该按键可存储当前显示的读数。按住至少2秒钟可调用已经存储的读数。
- b) 在编程模式中时,按下该按键可改变当前显示的编号或开关状态。

存储、调用和清除数据记录仪内存

存储读数

这款仪表最多可存储 300 个数据点,包括 100 个 pH 读数、100 个 mV 读数和 100 个导电性读数。在存储 读数时,应等到读数稳定(当读数稳定时会出现笑脸图标☺)。短促地按下 M+/RM 按键存储读数。出现 M+图标,数据点序列号增加。

调用读数

在测量模式中时,按下 M+/RM 按键可调用最近存储的读数。在液晶显示屏上会出现 RM 以及当前显示 读数的数据点序列号。在液晶显示屏右下方会显示测量信息。用 CAL 或 M+/RM 按钮翻卷浏览其余的存 储读数。按下 ENTER 按键,返回到正常测量模式。

清除读数

在调用模式中,按住 ENTER 按键至少 5 秒钟。液晶显示屏将显示 CLR,说明删除了以前存储的所有读数。在大约 2 秒钟后设备会自动返回到正常测量模式。

准备测量

- 1. 按下电源键、启动仪表。
- 2. 把 pH 电极连接到仪表上,将自动选择 pH 模式。
- 3. 拧下位于仪表底部的探针插口上的保护盖(把保护盖放在工具箱中以备将来使用)。
- 小心地把 pH 探针连接到仪表的探针插口中。探针插入只能有一个方向。在牢固地连接后,把电极 颈圈拧到仪表上,紧固探针。

三点校准(7.00pH, 4.00pH 和 10.01pH)

- 1. 按下 CAL 按键,进入校准模式。仪表显示屏上显示闪烁的 C1。
- 在蒸馏水中冲洗探针,在空气中晾干,然后浸入到 pH7.00 的缓冲溶液中,搅动溶液很短一段时间,然后放在缓冲溶液中,直到读数稳定。
- 3. 再次按下 CAL,显示屏上将显示闪烁的 7.00。
- 4. 当显示屏停止闪烁并显示 C2 图标时,表示已经完成该步校准过程。设备将自动转到第二校准点。
- 再次在蒸馏水中冲洗探针,在空气中晾干,然后浸入到 pH4.00 的缓冲溶液中,搅动溶液很短一段 时间,然后放在缓冲溶液中,直到读数稳定。
- 6. 再次按下 CAL,显示屏上将显示闪烁的 4.00。
- 7. 当显示屏停止闪烁并显示 C3 图标时,表示已经完成该步校准过程。设备将自动转到第三校准点。
- 再次在蒸馏水中冲洗探针,在空气中晾干,然后浸入到 pH10.01 的缓冲溶液中,搅动溶液很短一段 时间,然后放在缓冲溶液中,直到读数稳定。
- 9. 再次按下 CAL,显示屏上将显示闪烁的 10.01。
- 10. 在显示值稳定后,将出现三点校准图标 ♥ ♥ .

单点和两点校准

请注意如果预计的测量值已知,用户可以只进行单点或两点校准。

例如,如果预计 pH 值是 4,可以只进行单点校准(4pH)。如果预计的测量值在 4.00pH 与 7.00pH 之间, 用户可只进行两点校准(4.00 和 7.00pH),以此类推。

对于 4pH 校准,在液晶显示屏上只显示带圈的 L,对于 7.00pH 校准,在液晶显示屏上只显示带圈的 M,对于 10.01pH 校准,只显示带圈的 H(高中低)。

说明:在进行单点或两点校准时,可按下 ENTER 按键,退出校准模式或返回到正常测量模式。 对于所有其他应用模式,我们建议采用三点校准。对于新探针以及使用了很长一段时间的探针,我们建 议进行三点校准,可最大程度提高斜度线性。

测试样本的酸碱度

- 1. 根据上述要求进行 pH 校准。
- 2. 冲洗 pH 探针、晾干、然后浸入到样本溶液中。
- 3. 用探针搅动溶液很短一段时间,放置到溶液中,直到显示的读数稳定下来
- 4. 请注意样本溶液的温度越接近校准溶液,读数越准确。

编程设定 pH 参数

下表显示了可用的菜单编程项 P1~P7。下面的章节将详细解释每项参数

	参数	代码	选择
P1	pH 缓冲液序列选择		美国(欧洲和美国) NIS(NIST) CH(中国)
P2	蒸馏水 pH 温度补偿设置(参见表格下 面的说明)	PU I	关/开
Р3	蒸馏水氨溶液 pH 温度补偿设置(参见 表格下面的说明)	PU 2	关/开
P4	温度单位设置		°C / °F
Р5	背光灯显示时间设置	<u>bL</u>	0-1-3-6 分钟
P6	自动关机设置	RĒ	0-10-20分钟
P7	恢复到默认出厂设置		关/开

有关参数 P2 和 P3 的说明:蒸馏水以及蒸馏水氨溶液的测量值影响 pH 探针的温度补偿和斜率线性度。在电力和石化行业中有时候会采用这种测量方式。只有在必要时才把这些参数设置到"开"状态,平时应把这些参数设置到"关"状态。

参数 P1(pH 缓冲溶液设置)

- 1. 在 pH 测量模式中,按住模式按键至少 2 秒钟,然后松开,在液晶显示屏上将显示 P1 图标。
- 2. 用 CAL 或 M+/RM 按键在三种选择中切换: USA(在美国和欧洲使用), NIS(用于 NIST 校准目的)和 CH(用于中国)
- 3. 短促地按下模式按键可移动到下一参数(P2),或按下 ENTER 按键,返回到正常测量模式。

参数 P2(蒸馏水温度补偿设置)

- 1. 在 P2 菜单中,按下 CAL 或 M+/RM 按键打开或关闭该功能。
- 2. 短促地按下模式按钮可移动到下一参数(P3),或按下 ENTER 按键,返回到正常测量模式。

参数 P3(蒸馏水氨溶液温度补偿设置)

- 1. 在 P3 菜单中,按下 CAL 或 M+/RM 按键打开或关闭该功能。
- 2. 短促地按下模式按钮可移动到下一参数(P4),或按下 ENTER 按键,返回到正常测量模式。

参数 P4(温度测量单位设置)

1. 在 P4 菜单中, 按下 CAL 或 M+/RM 按键打开或关闭该功能。

2. 短促地按下模式按钮可移动到下一参数(P5),或按下 ENTER 按键,返回到正常测量模式。

参数 P5(显示屏背光设置)

1. 在 P5 菜单中,按下 CAL 或 M+/RM 按键选择默认背光时间: 0、1、3 或 6 分钟。

2. 短促地按下模式按钮可移动到下一参数(P6),或按下 ENTER 按键,返回到正常测量模式。

参数 P6(自动关机设置)

1. 在 P6 菜单中, 按下 CAL 或 M+/RM 按键选择自动关机时间: 0、10 或 20 分钟。

2. 短促地按下模式按钮可移动到下一参数(P7),或按下 ENTER 按键,返回到正常测量模式。

参数 P7 (恢复出厂默认设置)

1. 在 P7 菜单中,按下 CAL 或 M+/RM 按键选择开(重置出厂默认设置)或关(取消编辑)状态。

2. 短促地按下模式按钮可移动到第一个参数(P1),或按下 ENTER 按键,返回到正常测量模式。

pH 测量、校准和电极考虑因素

• 错误消息: ERR-1: 电极零电势错误

ERR-2: 电极斜率错误

对于任何一种错误,应检查下列项目:

- 1. 电极玻璃球中的气泡。大力摇动,去除气泡。
- 2. 校准所用的 pH 缓冲液的精度。根据需要更换缓冲液。
- 3. 通过参数 7 把仪表恢复到出厂默认设置(手册前面章节中有介绍)。
- 校准间隔取决于样本、电极性能和精度要求。对于高精度的测量(≤±0.02pH), 仪表在每次测量之前 应校准。对于一般精度(≥±0.1pH),校准间隔可以达到大约一周一次。
- 在下列情况下必须重新校准仪表:
- 1. 新探针或者使用了很长一段时间的探针
- 2. 在测量 pH<2 的酸溶液或 pH>12 的碱溶液后
- 3. 在测量含有氟化物的溶液或高浓度有机溶液后
- 4. 如果溶液温度与校准溶液温度差别很大
- 随机提供的保护瓶中的浸入溶液用于维持玻璃泡和连接部位的活性。松开胶囊体、取下电极、在蒸 馏水中冲洗、然后进行测量。在测量之后插入电极、紧固胶囊体、防止溶液泄露。如果浸入溶液浑 浊或发霉,应更换溶液。
- 配制浸入溶液:把25g纯氯化钾溶解到蒸馏水中,然后稀释到100mL。电极不能长时间地浸入到纯 净水蛋白质溶液或酸性氟化物溶液中。另外不要把电极浸入到有机硅脂质中。
- 为保证校准精度,标准缓冲溶液的酸碱度必须是可靠的。缓冲溶液应经常更换,特别是在多次使用 之后。
- 为提高精确度, 仪表应保持清洁干燥, 特别是仪表的电极和电极插口。用医用棉花和酒精清洁(如果 需要)
- 组合式电极正面的敏感玻璃球不能接触硬表面。电极表面的划痕或裂纹会造成读数不准确。在每次测量前后,应用蒸馏水清洗电极,然后在空气中晾干。不要用纸巾擦拭玻璃球,因为可能影响电极电势的稳定性,增加响应时间。如果样品沾到电极上,那么应彻底清洗电极。如果在清洗后溶液显得不干净,那么应使用溶剂。
- 电极在长时间使用后,或在强酸强碱溶液中使用后损坏了敏感玻璃球后,或样本液体造成连接部分 堵塞,那么电极就会钝化、敏感度下降、响应速度变慢、读数不准确。在这些情况下应尽快更换电极。
- 如果读数异常,那么应再次校准。如果问题仍然存在,那么应更换电极。用户也可以尝试通过参数 7(在前面章节中有详细解释)重置为出厂默认设置。在多次使用、恶劣条件和维修不正常的情况下可 能会缩短电极寿命。

mV 测量模式

- 1. 按下电源键启动仪表。
- 2. 短促地按下模式按钮, 切换到 mV 模式(如果需要)
- 3. 把探针连接到仪表上
- 4. 把电极浸入到样本溶液中,用电极慢慢地搅动溶液,然后放置在溶液中。
- 5. 当液晶显示屏上出现笑脸图标时,说明读数已稳定。

mV 编程参数

提示	参数	代码	设置
P1	背光显示时间	ЪL	0-1-3-6 分钟
P2	自动关机时间	RE	0-10-20分钟

参数 P1(显示屏背光设置)

- 1. 按下模式按键进入 P1 参数
- 2. 按下 CAL 或 M+/RM 按键选择默认背光时间-0,1,3 或 6 分钟。
- 3. 短促地按下模式按键,进入下一参数(P2)或按下 ENTER 按键返回到正常测量模式。

参数 P2(自动关机设置)

1. 在 P2 菜单中, 按下 CAL 或 M+/RM 按键选择自动关机时间 0, 10 或 20 分钟

2. 短促地按下模式按键,返回到参数 P1 或按下 ENTER 按键返回到正常测量模式。

导电性测量模式

准备测量

- 1. 按下电源键、启动仪表。
- 2. 短促地按下模式按键,切换到导电性模式(如果需要)
- 3. 用 Enter 按钮选择总溶解模式、盐度、电阻性和导电性
- 4. 拧下位于仪表底部的探针插口上的保护盖(把保护盖放在工具箱中以备将来使用)。
- 小心地把电极连接到仪表的输入插口中。电极插入只能有一个方向。在牢固地连接后,把电极颈圈拧到仪表上,紧固探针。

校准

- 1. 按下 CAL 按键,液晶显示屏上将显示 CAL 并闪烁。
- 2. 清洁导电性电极,并在空气中晾干(用蒸馏水清洗)
- 3. 把电极浸入到 1413µS/cm 校准溶液中
- 4. 用电极搅动溶液,放置在溶液中,直到出现稳定图标(笑脸图标)
- 再次按下 CAL,显示屏上将出现闪烁的 1413µS/cm。几秒钟后将出现结束图标,仪表将返回到测量 模式。
- 6. 液晶显示屏将显示稳定的测量读数 1413μS/cm 和校准图标 M, 说明校准已完成。

7. 如果测量值是不稳定的,那么应重复校准直到测量值稳定下来。如果需要应更换电极。

说明: 仪表在出厂前已经完成校准, 一般情况下从包装盒中取出后就可以立即使用。只能在导电性模式 下校准仪表, 而不能在总溶解固体、盐度或电阻性模式下进行校准。

测量样本的导电性

- 1. 清洗导电性电极、在空气中晾干、然后浸入到样本溶液中。
- 2. 搅动溶液,然后把电极放置在溶液中,直到读数稳定下来(出现笑脸图标)
- 3. 在仪表显示屏上读出导电性读数。
- 4. 用 ENTER 按键选择总溶解固体、盐度、电阻性和导电性测量模式。

校准考虑因素

这款仪表提供两种校准溶液序列(在参数 P1 中配置)。

- (a) (欧洲和美国系列)-- 84µS/cm, 1413µS/cm, 12.88 mS/cm 和 111.9 mS/cm
- (b) (中国系列)-- 146.6µS/cm, 1408µS/cm, 12.85mS/cm 和 111.3 mS/cm

EC600提供独特的单点校准功能。用户可以选择最接近预计测量值的校准溶液。一般情况下最常用的 校准溶液是 1413μS/cm.采用所提供的导电性电极(K=1 cm⁻¹),然后用所提供的 1413μS/cm 校准溶液 进行校准。这款仪表可用于低于 100mS/cm 的测量。请参见下图。

测量范围	0.05 到 20µS/cm	0.5µS/cm 到 200mS/cm			
电极常数	K=0.1cm ⁻¹ (流量实验)	K=1.0cm ⁻¹			
校准溶液	84μS/cm	84µS/cm	1413µS/cm	12.88 mS/cm 111.9 mS/cm	
校准指示	Θ	Ŀ	۲	€	

有两种电极校准方法:标准溶液校准和常数校准。在校准一章中描述的校准是标准溶液方法(这是最精确的校准方法,前提是校准缓冲溶液是精确的、新鲜的)。

要选择常数校准方法,可采用**编程设定参数-导电性**一章中所所描述的参数 P5. 仪表的温度补偿系数是 2.0%。但导电性温度系数根据溶液的类型和浓度不同而有所不同。常见的溶液类 型可采用下表(采用下面的**编程设定参数-导电性**一章中的参数 P4)。

仪表在蒸馏水中测试低于 10uS/cm 的情况下可进行自动非线性温度补偿。

说明: 当温度补偿系数设置为 0.00(无补偿)时,测量值将以当前温度为根据。

溶液	温度补偿系数
氯化钠盐溶液	2.12%
5%氢氧化钠溶液	1.72%
稀释的氨溶液	1.88%
10%盐酸溶液	1.32%
5%硫酸溶液	0.96%

重要提示:当用户改变了出厂默认设置中一个或多个可编程设定的参数时,那么在显示屏右上角显示 参数代码,如下图所示(在这种情况下是参数 Tcc)。如果改变了多个参数,那么只显示第一个参数改 变的代码。

编程设定参数-

导电性

下表说明了可用的编程菜单项目 P1~P7。在下面的章节中将详细解释每个参数。

	参数	代码	选择
P1	标准溶液序列选择	SOL	美国(欧洲和美国) CH (中国)
P2	电极常数选择	[on	0.1, 1,或 10
P3	参考温度选择	rEF	77, 68和64°F (25, 20和 18°C)
P4	温度补偿系数设置	FEE	0.00 到 9.99%
P5	电极常数校准	בנ	
P6	温度单位		℃℉
P7	背光显示时间设置	61	0-1-3-6 分钟
P8	自动关机设置	RE	0-10-20 分钟
P9	恢复到出厂默认设置		 关/开

参数 P1(pH 缓冲溶液设置)

1. 在 pH 测量模式中,按住模式按键至少 2 秒钟,然后松开,在液晶显示屏上将显示 P1 图标。

2. 用 CAL 或 M+/RM 按键在两种选择中切换: USA(在美国和欧洲使用), NIS(用于 NIST 校准目的)和 CH(用于中国)

3. 短促地按下模式按键可移动到下一参数(P2),或按下 ENTER 按键,返回到正常测量模式。

参数 P2(电极常数 K 选择)

1. 在 P2 菜单中,用 CAL 或 M+/RM 按键选择所需的电极常数(0.1, 1.0 或 10)。默认设置值是 K=1.0 2. 短促地按下模式按键可移动到下一参数(P3),或按下 ENTER 按键,返回到正常测量模式。

参数 P3(参考温度选择)

1. 在 P3 菜单中,用 CAL 或 M+/RM 按键选择所需的参考温度(25,20 或 18)。默认设置值是 25。 2. 短促地按下模式按键可移动到下一参数(P4),或按下 ENTER 按键,返回到正常测量模式。

参数 P4(温度系数温度补偿设置)

1. 在 P4 菜单中,用 CAL 或 M+/RM 按键选择系数(0.00 到 9.99 的百分比)。当设置为 0 时,温度补偿关闭,默认设置是 2.0%。

2. 短促地按下模式按键可移动到下一参数(P5),或按下 ENTER 按键,返回到正常测量模式。

参数 P5(电极常数校准)

在 P5 窗口中,用户可以在液晶显示屏的主测量区域看到当前的常数,单位为 cm⁻¹。
在 P5 菜单中,按下 CAL 或 M+/RM 按键,改变常数,与电极外壳上印刷的常数一致。
短促地按下模式按键移动到下一参数(P6)或按下 ENTER 返回到正常测量模式。

参数 P6(温度测量单位)

1. 在 P6 菜单中,按下 CAL 或 M+/RM 按键,选择所需的测量单位(C 或 F)

2. 短促地按下模式按键移动到下一参数(P7)或按下 ENTER 返回到正常测量模式。

参数 P7(显示屏背光灯设置)

1. 在 P7 菜单中,按下 CAL 或 M+/RM 按键,选择默认背光时间: 0、1、3、6 分钟

2. 短促地按下模式按键移动到下一参数(P8)或按下 ENTER 返回到正常测量模式。

参数 P8(自动关机设置)

1. 在 P8 菜单中,按下 CAL 或 M+/RM 按键,选择自动关机时间: 0、10 或 20 分钟 2. 短促地按下模式按键移动到下一参数(P9)或按下 ENTER 返回到正常测量模式。

参数 P9(恢复出厂默认设置)

 在 P9 菜单中,按下 CAL 或 M+/RM 按键,选择开(重置出厂默认设置)或关(取消编辑)。应注意在选择 开时,出厂默认设置将自动启动,没有确认步骤。用户只有在绝对确定需要默认设置才能选择开。
短促地按下模式按键移动到第一个参数(P1)或按下 ENTER 返回到正常测量模式。

导电性测量、校准和维护考虑因素

- 仪表和探针在出厂前已经进行了校准,用户在收到设备后可立即进行测量。
- 在正常情况下建议每月进行一次校准。对于刚刚购买的导电性电极或者已经工作了很长一段时间 的电极需要进行校准。
- 导电性电极应保持清洁。最好应使用蒸馏水冲洗,然后在空气中晾干。
- 所提供的导电性电极表面有一层金属铂(黑色),目的是降低电极极化,提高测量范围。不要抛光黑 色铂金属表面,可以在蒸馏水中搅动来清洗。如果在黑色铂金属外层上出现过多的金属堆积,那 么可以用热水、清洁剂或酒精来清洗。
- 如果上述清洁方法无效,那么应更换电极。
- 如果发现异常,可以把仪表重置为出厂默认设置(参数 P9)。如果恢复为出厂默认设置仍不能解决问题,那么应返厂检查。

pH 技术规格

测量范围	-2.00 到 19.99 pH
分辨率	0.1/0.01 pH
精确度	仪表:±0.01pH;探针:±0.02pH
输入电流	$\leq 2 \times 10^{-12} \mathrm{A}$
输入阻抗	$\geq 1 \times 10^{12} \Omega$
稳定性	±0.01 pH / 3 小时
温度补偿范围	0 到 100 °C (32 到 212 °F) 自动

mV 技术规范

测量范围(mV/E _H)	-1999 mV 到 0 到 1999mV
分辨率	lmV
精确度	仪表: ±0.1% FS

导电性技术规范

导电性测量范围	0.00 到 19.99 μS/cm	0.01 µS/cm
		0.1 µS/cm
	20.0 ΞJ 199.9 μS/cm	1 µS/cm
	200 到 1999 µS/cm	0.01 mS/cm
	2.00 到 19.99 mS/cm	0.1 mS/cm
	20.0 到 199.9 mS/cm	
总溶解固体测量范围	0 到 100 g/L (总溶解固体)	1/g/L
盐度测量范围	0 到 100 ppt	1 ppt
电阻性		**
	0 到 100 Mohms	1 Mohms
分辨率	0.01/0.1/1 µS/cm 和 0.01/0.1mS/cm	
精确度	仪表: ±1% F.S.;探针: ±2% F.S.	
电极常数	0.1 / 1 / 10 cm ⁻¹	
参考温度	25, 20 和 18 °C (77, 68 和 64 °F)	
温度补偿系数	0 到 50 °C (32 到 122 °F)(自动)	

其他技术参数

数据存储量	300个数据组
存储内容	数据序列号、测量值、测量单位
功率	两块'AA 电池(1.5V x 2)
尺寸和重量	仪表: 65×120×31mm (2.6 x 4.7 x 1.2")/ 180g (6.3 oz)
	外壳: 360 x 270 x 76mm (14.1 x 10.6 x 3") / 1.7kg (3.57 lbs)
质量/安全性认证	ISO9001, CE 和 CMC
丁作条件	

环境温度	5 到 35 °C (41 到 95 °F)
环境湿度	≤85%
IP 等级	

TDS

TDS	TDS0 至 100 克/升(总溶解 固体)为	1 g/L
TDS 转换方 法	*请参阅多项式设计 442 的方法	去表 1

表 1: 多项式设计 442 的方法

导电性测量范 围 25℃	KCI		NaCl		TDS	TDS 442	
uS/cm	mg/l	Ratio	mg/l	Ratio	mg/l	Ratio	
23	11.6	0.50	10.7	0.47	14.7	0.64	
84	40.4	0.48	38.04	0.45	50.5	0.60	
445	225.6	0.50	215.5	0.48	300	0.67	
1417	744.4	0.52	702.1	0.50	1000	0.71	
1500	757.1	0.50	737.1	0.49	1050	0.70	
2060	1045	0.50	1041	0.50	1500	0.72	
2764	1382	0.50	1415	0.51	2063	0.75	
8974	5101	0.57	4860	0.54	7608	0.85	
12880	7447	0.58	7230	0.56	11367	0.88	
15000	8759	0.58	8532	0.57	13445	0.90	

Copyright © 2014-2015 FLIR Systems, Inc.

版权所有,禁止全部或部分复制。

www.extech.com